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An exact mathematical discussion of the linearized Enskog-Vlasov equation is given. 
A criterion for the occurrence of the linear instability is related to a criterion for the 
occurrence of the bifurcation of the equilibrium stationary solution to the nonlinear 
Enskog-Vlasov equation. Mathematical results are interpreted physically in connection 
with phase transitions. 
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1. I N T R O D U C T I O N  

There is a view of phase transitions, in equilibrium statistical mechanics, which 
consists in defining a phase transition as a discontinuity in the equilibrium correlation 
functions when thermodynamic parameters are varied. We shall call this approach to 
the equilibrium description of phase transitions the equilibrium Kirkwood-Monroe  
theory (1) of  phase transitions, abbreviated as the equilibrium K M  theory. Its relation 
to the other equilibrium theories of  phase transition, namely to the Yang-Lee theory, 
which discusses dependence of the partition function on the thermodynamic param- 
eters, is not  yet generally known. (~) The equilibrium K M  theory should be more 
general than the Yang-Lee theory because it should include discussion of the partition 
function as a function of thermodynamic parameters (as is the Yang-Lee theory) 
and moreover also as a functional of  an external field (equilibrium correlation 
functions are functional derivatives with respect to an external field). Unfortunately, 
however, we do not know about any example of  such a general study of the partition 
function. 

Discussion of the equilibrium distribution functions usually starts with an 
equation or set of equations for these functions which is obtained by truncating an 

1 Department of Physics, University of British Columbia, Vancouver, Canada. 

347 

�9 197I PIenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. 



348 M. Grmela  

exact, generally infinite, set of equations for these functions. Truncation brings about, 
as a rule, a nonlinearity of the starting equation. Phase transition appears as a splitting 
of solutions to these equation into more branches. Because of a truncation, the 
equilibrium KM theory is of course not exact from the beginning and it is then 
difficult to compare it with exact theories, e.g., the Yang-Lee theory. The only solved 
examples of the equilibrium KM theory so far exist when the basic starting equation 
is one equation for the one-particle equilibrium distribution function (references are 
given in Section 3). 

A very attractive advantage of the equilibrium KM theory is the possibility of 
its natural dynamical extension (we shall call it the nonequilibrium Kirkwood-Monroe 
theory, abbreviated as the nonequilibrium KM theory). The basic equation or set 
of equations of the equilibrium KM theory is considered as the equation or set of 
equations for the equilibrium stationary solution to a dynamical equation (equation 
or a set of equations for the nonequilibrium, time-dependent distribution functions). 
In other words, by putting 

f~(rl , vl ,  r2, v2 ..... r~, v~, t) = f~.eq(rl , r2 ..... r~) exp[--�89 2 + "" @ v~2)] (1) 

where fi = (/cuT) -1, with kB the Boltzmann constant, T is temperature, r~ and v~ are 
position and velocity vectors of the ith particle, respectively, t is time, and f ,  and 
f~,eq are the n-partMe distribution function and equilibrium distribution function, 
respectively, into a dynamical evolution equation or set of equations, one obtains 
the basic equation of the equilibrium KM theory for the f~,eq.  Equilibrium distri- 
bution functions are then studied together with the properties of their approach to 
equilibrium when the thermodynamic parameters are varied. The examples solved 
so far show that when the thermodynamic parameters have such values that there is 
a discontinuity in the equilibrium distribution functions (i.e., a phase transition takes 
place according to the equilibrium KM theory), there is also a discontinuity in the 
approach to the equilibrium in the sense that in the spectrum of the linearized dyna- 
mical operator, points with negative real part occur (the time dependence is assumed 
e-a~), i.e., a linear instability appears. There is, unfortunately, no example of an 
exact discussion of the nonlinear dynamical equation for distribution functions which 
could illustrate rigorously the relationship between the equilibrium and nonequi- 
librium KM theories. Many illustrations could be found, however, in studies of 
nonequilibrium dissipative structures(8-% The basic ideas about the relationship 
between some mathematical properties of a dynamical equation and physical 
properties connected with changes of macroscopic structures are the same for both 
of these theories. The only difference is in the starting dynamical equation (in the 
flow structures, it is usually the Navier-Stokes equation or its simpler models) and 
in the Eq. (1). Instead of the right side of (1), a distribution function representing a 
nonequilibrium stationary solution to the chosen basic dynamical equation is used. 

We would like to point out that, however far we are from the exact microscopic 
dynamics, taking for example the kinetic equation as the basic dynamical equation 
(in the next sections, it will be the Enskog-Vlasov equation), we are still one stage 
before postulating a fixed set of macroscopic state variables which is the starting 
point of most theories which discuss nonequilibrium properties of phase transitions. 
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The starting equations of these theories could be obtained from basic equations of 
the nonequilibrium KM theory as equations for coefficients in the decomposition of 
the distribution functions into a fixed, finite set of functions. Thus, from the mathe- 
matical point of view, the choice of a fixed set of macroscopic variables represents a 
special approximate method of solution to a dynamical equation of the nonequilibrium 
KM theory. As an illustration, we mention the relation between the starting kinetic 
equation for the van der Waals gas used by de Sobrino (7) (this kinetic equation is a 
special case of the Enslog-Vlasov kinetic equation) and the starting set of equation 
used by Kawasaki (s). For the values of thermodynamic parameters which are close 
to its values corresponding to a phase transition, a great change in the properties of 
the solution is expected. It might be beyond the possibilities of a fixed approximate 
method to express these changes properly. The choice of the best approximate method 
for obtaining an asymptotic solution (which is generally different for different values 
of thermodynamic parameters) or physically the choice of a set of the best macroscopic 
state variables is one of the results of an exact mathematical discussion of a basic 
dynamical equation. 

In this work, the kinetic equation (i.e., the equation for the one-particle distri- 
bution function only) of the Enskog-Vlasov type is taken as the basic dynamical 
equation. An exact mathematical discussion of some of the properties of its solution 
and the relationships of mathematical properties to macroscopic physical properties 
is the main taks of this paper. 

The relation of the Enskog-Vlasov equation to exact classical dynamics and 
reasons for choosing just this equation are discussed only very briefly in Section 2. 
The equilibrium KM theory corresponding to the Enskog-Vlasov equation (Section 3) 
includes a generalization of the original Kirkwood-Monroe discussion of hard sphere 
crystallization (1) and the van Kampen theory of the van der Waals gas. (22) In this 
section, we also try to give a complete review of works related to the equilibrium KM 
theory. In Section 4, we discuss exactly the linearized Enskog-Vlasov equation. 
We prove some general mathematical properties of the linearized Enskog-Vlasov 
operator (compactness and selfoadjointness of some of its parts) and general theorem 
about the essential parts of the spectrum of this operator. This theorem is a general- 
ization of similar theorems for the linearized Boltzmann and linearized Vlasov 
operators. Especially interesting, in connection with physical properties of a change 
of macroscopic structures, is the mathematical problem of finding a criterion for 
absence of spectral points )t with Re )t < 0 (linear instability). According to the 
theorem about essential spectrum, no point of an essential spectrum could in any case 
have a real part less than zero. In this way, we have generalized the studies in Refs. 7 
and 9-11,2 which have dealt with the problem of the absence of eigenvalues only (i.e., 
the problem of linear stability against exponential growth). Equations used in these 
works are mostly special cases of the linearized Enskog-Vlasov equation. I f  we apply 
all approximations used in these works to the criterion for occurrence of bifurcations 
used in these works to the criterion for occurrence of bifurcation of the equilibrium 
stationary solution to the nonlinear Enskog-Vlasov equation which is found in 
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Section 3, we get criteria identical with those obtained in Refs. 7 and 9-11 for linear 
stability against exponential growth. At the end of Section 5, we find the simplest 
model of the linearized Enskog-Vlasov operator for which both criteria coincide 
exactly. We show further that under some assumptions, the coincidence also takes 
place for more complicated models. The problem of the residual part of the spectrum 
in connection with linear stability needs more detailed models (see Section 5) and 
is left open. 

Relations between the equilibrium KM theory and some properties of the 
dynamical equation form the basis for our physical argument about the correspon- 
dence between a linear instability (mathematical property of the linearized Enskog- 
Vlasov operator) and phase transitions (macroscopic physical property). 

Also, other connections between mathematical concepts connected with an 
evolution equation and macroscopic physical concepts have been proposed. Because 
they are not mutually independent and because we use some of them in our arguments, 
we mention the others: 

(i) The problem of the macroscopic description of nonequilibrium (but close 
to equilibrium) states, especially the problem of the selection of the best set of 
macroscopic state variables (using these variables, the best approximation of the 
exact asymptotic time development can be achieved) corresponds to the mathematical 
study of the asymptotic solution to a basic dynamical equation. 12-14) 

(ii) The time-displaced correlation function (the cross sections of many scat- 
tering experiments, e.g., slow neutron scattering, can be expressed through these 
functions) are solutions to a basic dynamical equation when appropriate initial 
conditions are considered. (15,1G) 

(iii) The nonequilibrium entropy as a physical quantity is closely related to 
the Liapunov function (the mathematical quantity useful for discussions of non- 
linear stability). (5a7) 

(iv) The macroscopic universal evolution criterion is related to a variational 
approach to a basic dynamical equation. (aS) 

2. K I N E T I C  E Q U A T I O N  

The equation which will serve us in the next sections as the basic starting equation 
is the following kinetic equation of the Enskog-Vlasov type: 

8f(r, v, t)/St = Rf(r, v, t) (2) 

where 

R = R E + R v - - V ~ 8 / S r ~  

REf  = f d ~  d%~ a2(g~c~) H ( g ~ )  [z/~(r + �89 

• f ' ( r ) f l ' ( r  + or• -- "qE(r -- �89215 f ( r ) f l ( r  -- ~x)] 

f d3r~ d3vz [SV(] r -- rz [)/Sr~] ~/v(r, h)f~(h) R v f  (1/m)[~f(r)/Ov~] 
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f ( r ,  v, t) is the one-particle distribution function; r, v, and t are position vector 
velocity vector, and time, respectively; RE and Rv are the Enskog and Vlasov part 
of the operator R; m and cr are mass and diameter of  the hard-sphere particles under 
consideration, V is the long-range part of the two-particle potential function; 
g -- v~ -- v; v' = v + • vl' = v~ -- • ); ~ is a unit vector directed from 
the center of the sphere with velocity v to the center with velocity v'; the standard 
abbreviation f~'(r) ~ f ( r ,  v~', t),.., is used; H is a step function, H(x) = 1 for x > 0 
and H(x) ----- 0 for x < 0; the function ~ is supposed to be a functional of  n(r, t) 
J" d%/ ( r ,  v, t), 

f 2 ( r l ,  r 2 ,  Vl ,  v2 ,  t )  = z/(rl , r 2 ) f ( h  , vl ,  t ) f ( r2 ,  v2, t )  

where f2 is two-particle distribution function. We shall write 

~ ( r l ,  r2) := "Q{r/[�89 I -~- r ~ ) , / ] ; I  r l  - -  r~ 1} = ~[�89 + r~)] 

(in the operator Rn,  we substitute rl = r, r~ =' r -k ex). It has been found use- 
ftdm,20,~) to express any operator governed by time evolution [in Eq. (2), the operator 
R] as the sum of reversbile and irreversible parts (R (r) and R (~), respectively) which 
have different character under the time reversal transformation r--+r ,  v - -+- -v ,  
t --> - - t :  

- - v ,  - - t )  = v, t ) ,  R(i)f(r, --v, - - t )  = R(i)f(r, v, t) 

e e l -  e r)J 

I f  in RE only terms of order e 2 are saved, the Boltzmann operator R~ (R~ r) ~ 0) is 
obtained. 

We have the following reasons for particularly choosing Eq. (2). 

(i) The corresponding equation for the equilibrium stationary state is closely 
related to equations which have been used by Kirkwood and Monroe (11 for hard- 
sphere crystallization and by van Kampen (~2) for the gas-liquid transition of the 
van der Waals gas. Recently, it has been shown(~. 24) that this last equation, for the 
class of Kac potentials and in the so-called van der Waals limit, is even exact. 

(ii) Numerical studies (25,2~1 of special forms of (2) show that good agreement 
can be found between calculated and experimental values for some quantities related 
to time development, especially considering parameters m and c~ and functions V, 
~TE, and ~/v as effective quantities (i.e., they have no longer the original physical 
meaning and they are free to be chosen conveniently). 

(iii) Equation (2) includes and generalizes most of the kinetic equations which 

It can be found that (~~ 

R(d ) -= 0, R g  ) --= Rv  

R(Er)f = f d 2~ d~vz �89 ~Tr(r -k �89215 + ~r• + f z ( r  -k (r• 
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have already been used in connection with a discussion of phase transitions. (7,1~ 
If  we consider Eq. (2) together with the initial condition 

f(r ,  v, 0) = feq(V)(3(r -- r0) + n q- geq(r)) 

where g = f2 - - f~f l ,  then its solution will be the time-displaced correlation function. 
Closely related is also the classical limit of the equation for the two-particle Green's 
function, which has been discussed by Mermin. (a) 

(iv) Equation (2) is a generalization of the Boltzmann and Vlasov equations 
and its exact mathematical theory can be considered as organic part of the generalized 
transport theory. (2s) 

Although we accept Eq. (2) as the postulated basic equation, we mention some 
of the problems and difficulties arising when trying to derive such an equation from 
exact classical dynamics. 

(i) In the derivation from the BBGKY hierarchy, (r) it is assumed that the 
velocity correlations are neglected. Accepting it in some approximate way, we would 
get an additional term of the Fokker-Planck type. (29) 

(ii) Discussion of the Enskog equation from the cluster expansion point of 
view has been given by Cohen. (3~ 

(iii) Combining a repulsive and attractive potential, it is difficult to define the 
stage before and after collision. In Eq. (2), the approximation is used that the long- 
range attractive part of the potential has no influence on binary collisions. Accepting 
this in some approximate way (small-angle scatterings), an additive term also of the 
Fokker-Planck type would appear. We hope to discuss Eq. (2) including a Fokker- 
Planck term in a subsequent paper. 

3. E Q U I L I B R I U H  S T A T I O N A R Y  S O L U T I O N  

We shall look for a stationary solution of the form 

f(r ,  v) = n(r) M(v) (3) 

where M(v) is the Maxwell distribution 

M(v) = (rn/2~r)3/2fi 3/2 exp(-- �89 2) 

fi = (kzT) -1, and T is temperature. Further, the dimensionless variables used are 
u = Vo v, v2 = (�89 1/~, and the new time t/Vo will be denoted by t. The Maxwell 
distribution is now M(u) = ~r-3/2 exp --u z. Inserting (3) into (2) and considering in (2) 
the Vlasov term only, one gets 

[an(r)/ar~] q- fin(r) f [eW(l r -- r' l)/~r,] nv(r, r') n(r') dar ' = 0 (4) 

and considering in (2) the Enskog term only, we get 

[an(r)/~r~] -? a%(r) f *]E(r q- �89 n(r + au) x~ dZx = 0 (5) 
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If  we try to put into (4) the hard core potential function V =- VHc and the 
corresponding *iv =- *iz~c, Vezc(X) = oe for x < e and Vzic(X) = 0 for x > e, 

* i . c  = H(x  --  e)*iE (6) 

{i.e., exp[--flVHc(X)] = H(x  --  e) for all/3, thus *iHc = exp[--/3Vz~c(X)]*iE for all/3 
and --/3(d/dx)VHc(X)exp[--/3Vlzc(X)] = 3 ( x -  or)}, we get exactly Eq. (5). This 
illustrates the evident fact that different dynamical equations can give the identical 
equation determining the equilibrium stationary state, so that there are many ways 
of extending the equation for n(r) to the dynamical region. Equation (5) is basically 
that used by Kirkwood and Monroe m for discussion of hard-sphere crystallization. 
Kobayashi c~7) used Vlasov-type collisionless dynamics [in the Eq. (7), only Rv is 
considered] for dynamical extension of the Kirkwood-Monroe theory. We see that 
the binary collision Enskog dynamics can be used as well. 

The equation for n(r) corresponding to the whole Eq. (2) is 

{8[ln n(r)]/~r~} -k fl f [~V(I r -- r' I)/Or~] *Iv(r, r') n(r') d3r ' 

-t- e 2 f *iE(r + iota) n(r + crx) K~ d~• = 0 (7) 

According to the equilibrium KM theory/1,22,~1-aG) an exact, complete study of (7) 
yields a good picture of the equilibrium properties of physical system whose dynamics 
can be represented by Eq. (2). Recently, Strickfaden ~3) studied the simplified form 
of (7) (the so-called van Kampen equation 1~2)) corresponding physically to the van 
der Waalls gas which is obtained from (7) supposing that *Iv ~ 1 and the second 
term in (7) is approximated by the first term in a Taylor expansion in e l  On/Or I, 

(~/er~) [~6(n) + / 3  f V(Ir -- r' 1) n(r') dar '] = 0 (8) 

(where q~ is a nonlinear function, different from the logarithm and determined by 
*it{n}) or equivalently, the Hammerstein:type equation 

~(n) -k 13 f V(I r -- r' ]) n(r') dZr ' = (8') 

(~ is related to IT n H). This example also shows the incompleteness of the dynamical 
description given by Eq. (2). Equilibrium statistical mechanics (i.e., the variational 
principle for the free energy137 0 gives not only Eq. (8), which we obtained here also 
from (2), but also two other conditions, the first arising from the required property 
of the second variation, and the second arising when accepting also discontinuous 
functions in the space of  trial function. The second condition is called Maxwell's rule. 
It has been shown 133~ that both of the additional conditions are important for elimi- 
nation of  solutions of (7) corresponding to reality. 

822/3/3-8 
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It has been proved for many nonlinear operators (3s) that in the discussion of 
the nonlinear eigenvalue problems, a key role is played by the linear eigenvalue 
problem corresponding to the linearized operator R~ [this is also true, for example, 
for the Hammerstein equation (8)]. I f  we suppose (because we cannot prove it) that 
it is also true for Eq. (7), we can get an explicit condition for bifurcation (physical 
existence of a change of phase). Inserting ~(r) = n0[1 + nz(r)] into (7), saving only 
linear terms in nz, and performing the Fourier transform 

nz(r) = f (exp i k .  r) qh(k) d~k 

one the gets condition 

k @ ~A(v~)(k) -4- A~i)~(k) + 2A~)o(k) = 0 (9) 

where the functions A are defined in the next section. Putting V =~ VHC, "qv =-- ~?HC, 
= 0, or V ~ 0, this condition is equivalent to Kirkwood's condition (v~ for hard- 

sphere crystallization, or, in fact, to its slight generalization, because we consider 
the two-particle distribution function being a functional of the one-particle distribution 
function. Kirkwood assumed that these two functions are independent. Criterion (9) 
is also the criterion for the critical temperature of the van der Waals gas when 
approximations used for obtaining (8) from (7) are applied. A full discussion of the 
gas-liquid phase transition needs a more detailed discussion of (8) or (8') because in 
the transition from gas to liquid there appears a jump in density [norm of n(r)]. Such 
a problem is not already a classical problem of bifurcation. ~38) 

4. L I N E A R I Z E D  K I N E T I C  E Q U A T I O N  

A general rigorous study of the nonlinear Enskog-Vlasov kinetic equation as 
well as the Boltzmann or Vlasov kinetic equation still seems to be a very difficult 
mathematical problem. We shall assume that the corresponding linearized equation 
determines important properties of (2) or that its study is at least a useful first step 
in the study of (2). There are different possibilities of linearization around different 
stationary equilibrium solutions. We will discuss here only linearization around 
noM(u), ioe., 

f(r ,  u, t) = %M(u)[1 -t- h(r, u, t)/M1/2(u)] 

no ----- f n(r, t) d~r 

h(r, u, t) = f dSk(exp ik �9 r) %(u, t) 
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Omitting the straightforward calculations, we obtainl2~ (see also the appendix) 

8~k(U, t)/St = Rz~k(u, t) (10) 

R~ R (r) R (r) ~ R(Ei)~ ik~u~ = V,~ @- E,~ , 

R(r) f v,~gok = --i~u~(k~/k) A(vr)(k) M~/2(u) M~/'~(u ') %(u', t) dau' 

n(ff)~% = --i[G(kffk) A~r!~(k) M~/2(u) f M~/~(u ') %(n',  t) dau' 

-- (ks~k) A(~i)o(k ) M1/2(.) f Ml/2($t')(tt~' -- t/c~ ) ~k(ti', t) d3u'] @ I(r)~k 

R(t) f �9 E.~% = --v(u) % -- A(Ei]o(k) M~/2(u) M1/2(u ') I u' - - .  I ~k(u', t) dan ' @ IEa)c& 

A(vr)(k) = (47r/k2) no[W(1')( V, ~Tv.o ; k, 1) q- W(r)(V, ~Tv,~ ; k, �89 

A (r) (k = , , E,o. ) �89 now(r)(Vgc, ~THC,O" k. 1) 

A~)~(k) = (4rr/kz) now(r)(Vnc , ~?HC,~ ; k, �89 

A(~!o(k) = (4w/k~) noW(i)(V.c,  r ; k, 1) 

v(u) = noV e,oW~/"{(exp - -u  ~) + [u § (1/2u)] ~r~/~ erf (u)}, erf (x) := 2~-1/z f d~ exp--~ ~ 

(k~/k)(47r/k ~) w(r)(v,  a; k, c) : -  --  f dax sin(ok, x)[SV(x)/Sx~] a(x) 

or equivalently 

w(r)(v,  a; k, e) ~ (1/c e) .f dx [dV(x)/dx] a(x)[kcx cos(kcx) -- sin(kex)] 

and 

(4vr/k 2) W(t)(V, a; k, c) = f dSx cos(ck �9 x)[SV(x)/Sx~] boa(x) H(x~b~) 

where b is a fixed, unit  vector. According to the definition of  ~ in (2), we have 

~(r ,  r l )  ~ V{n[�89 + r l ) , l  r - -  r~ ]]} 

n[�89 + rl)] --  no , ----- % + ~1 ~- "'" 
Ho 

where 

The following well-known thermodynamic relations 
co 

~/no = ~ G r  + (4~/2)(nd~F) f ,ix x%(x) V(x) 
0 

r 

p'~/no = k . T  -- (4rr/6)(no/Y/) f dx x~7(x) dV(x)/dx 
0 
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(E is energy, p is pressure) can be used to make clearer a direct physical meaning of 
the functions A. Expressions which contain Vnc and ~Tnc [Eq. (6)] can be simplified, 
e.g., 

Wm(Vnc,  ~l~rc ; k, c) = --(llc2)~lE,o[ke~ cos(kccr) -- sin(kccr)] 

We prefer, however, the above unified notation. For ek small, we get 

A~!o(k) = ,~[,~no~7~,o + O(~k) ~1 

A~,)o(k) = ~Z[~k(47r/6)no~TE,o + O(ek) ~] 

A~)~(k) = ~2[c~k(5/48)4~'no'qB,z + O(ek) ~1 

The explicit form and some properties of the operator IE are given in the appendix. 
Equation (10) can be written in a more convenient form, 

a%/at = --[ik~u~ + v(u)] q)k + K% (11) 

where 

K = K I + K ~  

Kx~Ok = --iu~(k~/k)[fiA(vr)(k) + A~)~(k)l M~/2(u) f MI/2(u ') ~k(U', t) d3u ' 

and/(2 is the rest of the right-hand side of (10). The domain of R~ will be the Hilbert 
space L2(G), 

G ~ {u 1 : u 1 @ ( - -  00, -~ 00)} X {u 2 : u 2 ~ ( - -  00, @- 00)} X {/'/3 ; u3 E ( - -  0(2), ~-  00)) 

of complex-valued functions defined over G with inner product 

(f .  g) : f~ a3uf(u) g(u) 

( f  denotes the complex conjugate of f) .  The operator /(1 is the linearized Vlasov 
operator, i.e., nonself-adjoint and compact. In the appendix, it is proved that the 
operator/(2 is self-adjoint and compact. 

The following notation is used: Z'~ denotes the essential spectrum, consisting of 
a continuous spectrum, eigenvalues of infinite multiplicity, eigenvalues imbedded in 
the continuous spectrum, and the accumulation points of isolated eigenvalues; 
27~ denotes the isolated eigenvalues which have finite multiplicity; q~(u, t ) =  
e-~%a(u ). Now, we can prove the following theorem. 

T h e o r e m .  Z'~(R 3 = E, where E --= {A: ~ = ik~u~ -k v(u)} and X~(R 3 = P, 
where P is the point set containing those A r E such that 

[A -- ik~u~ -- v(u)] %,~ q- Kq~k,~ = 0 (12) 
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possesses a nontrivial solution 

~k,~ ~ L2(G) 

P roof. In the proof, we use the Weyl-Kato theorem(41): If  T is a closed operator 
from a Banach space to itself, and A is compact relative to T(i.e., A is T-compact), 
then T and T-~- A have the same essential spectrum. From the discussion of the 
Boltzmann equation, (42) we know that the multiplicative operator in (11) is closed 
and has the essential spectrum Z~ = E. According to the Lemma 2 in the appendix, 
where it is proved that K is compact (evidently also T-compact) and the Weyl-Kato 
theorem, the essential spectrum of Rt is again E. 

We see that the essential spectra of the linearized Boltzmann RB.~ and the 
linearised Enskog or Enskog-Vlasov operators are identical. For the RB.~, it is 
possible to prove more (i) all spectral points are nonnegative and (ii)the residual 
spectrum is empty. For the linearized Valsov operator Rv.~, it can also be proved 
that the residual spectrum is empty (also Section 5). 

The operator K, namely i~r) and I~ ~), is very complicated for detailed discussion 
of (12) (i.e., finding the eigenvalues and corresponding eigenfunctions of R~ and 
R**). Because K is compact, we can expect that some simplified models (using degen- 
erate kernels) can be of use. The idea of constructing such models is the same as in 
study of the Boltzmann equation or transport theory. (39) The experience from these 
theories teaches, however, that agreement between numerically calculated Z~ for the 
exact R~ and modeling (R,)~ is rather poor. Some models for the Enskog operators 
have already been proposed, (7,~1,a~ but they do not possess all the general properties: 
(i) equation for the equilibrium stationary solution coincides with the linearized 
equation (7), (ii) f dau R~k(U, t) = 0, (iii) equation has correct behavior under the 
time reversal transformation, (iv) K2 is a self-adjoint operator. 

5. D Y N A M I C A L  S T A B I L I T Y  

Let us go back to the nonlinear Enskog-Vlasov equation (2). Inserting the 
separation variable ansatz f(r ,  v, t) = F(r, v)e -a~ into (2) (or using Laplace trans- 
formation in t), the form of the equation becomes the generalized nonlinear eigen- 
value problem for R. The requirement 

~->oo 
f(r ,  u, t) ----~ 7r-3/Z(exp --flu 2) n(r) 

(null space of R is prescribed) brings about, moreover, dependence on/3. Generally, 
we have the problem N(/3, A;f)  = 0, where N is the corresponding nonlinear operator 
and /3 and )t the parameters ( b o th ) t  and/3 appear nonlineary). The problem 
[N(/3, A; f )  = 0]~= 0 is equivalent to the problem of the equilibrium stationary solution 
(the equilibrium K M  theory), which has been discussed in Section 2. 

Because we are interested especially in states which are close to stationary states, 
the asymptotic property of (2), or equivalently the problem [N(/3, h; f )  = 0]l~l~(0,~) 
(where e is a small real number) is the most important for us. We know from the 
equilibrium K M  theory that passing/3c, which corresponds to a phase transition, 
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the solution of [.~(fl, ;~;f) = 0]a=0 splits into more solutions, i.e., passing tic, there 
is a great change in properties of the solution of [~(/3, ) t ;f)  = 0]a=0 �9 It is natural to 
extend the Kirkwood-Monroe definition of phase transition for nonequilibrium states 
as a discontinuity of solution to the problem [~(/3, A;f) = 0]lal~(0,,). Because of a 
lack of rigorous discussion of the nonlinear dynamical equation, we cannot prove 
that from the discontinuity of a solution to the problem [N(/3, ) ; f )  = 0]~=o there also 
follows a discontinuity of solution to the problem [~(fl, )~;f) = 0]laE~(0,,i �9 

We can support the existence of the above-mentioned property of 

[~(/3, A;f) = 0)]ral~�91 

if fl is close to fl~ by the following physical argument. It is mainly macroscopic prop- 
erties that are changed by phase transitions, thus, discussing nonequilibrium states 
generally, the macroscopic (also called collective) description or, in other words, the 
composition of macroscopic (collective) state variables, is changed. It has been 
proposed a2-14) that there is a close correspondence between the nonequilibrium 
macroscopic description and properties of an asymptotic solution of (2) or equivalently 
the problem [~(/~, ) , ; f ) =  0]]al~(0,,). Thus changes expected physically in non- 
equilibrium macroscopic properties mean mathematical changes in properties of the 
solution to [N(/?, s  = 0]lal~(o.~ I . In the linearized dynamical equation, it seems 
natural to expect that discontinuities in the solution to [N(/3, )t;f) = 0)]lal~(0,~l will 
occur as a linear instability, i.e., appearance of spectral points with negative real 
part. Because of a lack of rigorous discussion of ~(fl, ) t ;f)  = 0, we cannot go deeper 
into the relationship between the problem [~(/3, ~ ; f )  = 0]1~1~(0,~) and the problem 
[~z(/3, ) , ;f)  = 0] arr where ~z is the linearized operator ~ around an equilibrium 
stationary solution. I f  the points with Re )t < 0 are eigenvalues, then the corre- 
sponding eigenfunctions play the most important role in the asymptotic behavior. 
They are generally very different from the eigenfunctions corresponding to the 
eigenvalues with small but positive real parts which determine an asymptotic solution 
if there is no spectral point with Re 3, < 0. Physically, we have just the expected 
change of macroscopic properties by a phase transition. 

According to the theorem about essential spectra (Section 4), no point of the 
essential spectrum can appear in any case in the left-hand side of the complex A plane. 
There is no general statement we can make about eigenvalues and the residual part 
of the spectrum. Discussion of the residual spectrum, which coincides with discussion 
of eigenvalues of the adjoint operator R~* (for each point )t of the residual spectrum 
of R~, the point ) lies in the point spectrum of RJ), needs very detailed models for 
Ra (see end of this section) and is not given here. The problem of the absence of 
eigenvalues with Re ~ < 0 has been studied for kinetic equations which are special 
cases of (10) in Ref. 1~,7,9a~ (If there is no eigenvalue with Re A < 0, the system is 
linearly stable against exponential growth, but it could be unstable against a different 
kind of growth.) 

Criteria for the absence of eigenvalues with Re ~ < 0 are also derived later in 
this section when different models for the operator are used. When comparing these 
criteria and also criteria obtained in Refs. 7, 9-11, 19 with the criterion (9) for bifur- 
cation of the equilibrium stationary solution to (2) [it is of course necessary to apply 
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to (9) all approximation used when discussing linear stability], we find that they 
coincide. This result supports our hypothesis that a discontinuity in the solution to 
[~(fi, A;f)  = 0]a=0 transfers into a discontinuity in the solution to 

[~(/3, A;f) = 0]lzl~(o,,) 

which appears in the solution to [~z(/3, A;f) = 0]laF~(0,, ) as an instability, or, physically 
that the occurrence of a linear instability in the approach to equilibrium is the non- 
equilibrium extension of the Kirkwood-Monroe definition of phase transition in 
equilibrium statistical mechanics. 

The physical arguments in Refs. 7 and 9-11 about the relationship between linear 
instability and phase transitions differ according to different methods used for the 
transition from the kinetic equation to equilibrium thermodynamics. In Mermin's 
discussion of the classical limit of the two-particle Green's function, the limit t --* 0 
gives the two-particle equilibrium distribution function, which is sufficient to deter- 
mine the thermodynamic potentials (only two-particle interactions are considered). 
The partition function for the van der Waals gas derived by van Kampen (2z) as a 
functional of the one-particle distribution function has been used by de Sobrino. (7) 

We give now a simple derivation of the criterion for the absence of eigenvalues 
in the left-hand side of the complex A plane. The simplest model of Rz for which this 
criterion can be found exactly and coincides exactly with (9) is the following. The 
operator/(1 is considered exactly, K2 is approximated by 

(K2).~ q~k = --2i(k~/k) A~)o(k) M~/2(u) u~ f M1/Z(u ') %(u', t) d 3 u  ' 

and v ~= 0. Instead of (10), we then have 

~q~k(U, t)/~t = --ik.u~%(u, t) -- iGM~/Z(u)[fi(k~/k) A~')(k) 

4- (k~/k) A~!~(k) 4- 2(k~/k) A~)o(k)] f M~/2(. ') %(u', t) d3u ' (13) 

This equation gives the exact linearized equation for the equilibrium stationary 
solution of (2). The operator (K~),~ does not possesses the general property of self- 
adjointness derived for the exact/s (Lemma 1 in the appendix). The irreversible part 
of R~ is completely neglected in (13). We introduce ~k(U, t ) =  M1/2(U)%(u), 
~k(U, t) = e-~gJk(u) (the direction of k is chosen to be the direction of the first space 
coordinate) and we assume normalization .[ ~bk(U) dSu = 1 [because Eq. (13) is linear, 
normalization is arbitrary]. We obtain 

where 

1 = z ( k ,  o~) 

Z(k, oo) =- ~r-1/2 f [1/(co -- kuO] ul(exp --ul 2) 

• [fiA~')(k) 4- A~]l(k) 4- 2Ag?o(k)] due (14) 

has the form of the Cauchy integral. We shall use the fact that the image of any 
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point  in the upper  ha l f  plane (of  the co plane) must  be either inside the curve 
Z(k, ~ § iO), ~ ~ ( - - ~ ,  +Go), or upon  it. (~9) We have used the nota t ion  co = ~ -k i~. 
F r o m  the Plemelj formulas,  one easy gets the real and imaginary parts  o f  the 
Z ( k , ~ +  iO), ~ ( - - o o , - k o ~ ) .  In  order to satisfy (14), one gets two conditions: 
(1) I m  Z(k, ~ -k i0) = 0, and if  this condit ion is satisfied for  a ~ = ~0, then moving  
f rom the left to the right o f  ~0, the sign of  I m  Z(k, ~ -k iO) changes f rom minus to  
plus. (2) Re Z(k, ~ -+- i0) = 1. In this way, we get the criterion (9) as the criterion for  
the absence of  eigenvalues with negative real parts.  

We shall now show that  i f  (13) is generalized by accepting v = const ~ 0 and 
(K2(i)),~ ----- vMa/~(u) f M*/2(u ') d3u ', using the following notat ion,  k ~ yv, "rv = --ioJ; 

[k-*A(v~)(k)]k=o = A v ,  [k-ZA~i),(k)]~=o = AE,,, [k-aA~)o(k)]~=o = A~.o 

the criterion for  the absence of  eigenvalues with negative real parts  remains unchanged 
provided y is small. 

Instead of  (13), we now have 

(-r @ iyu, + 1) Ck(u) = M(u) -- iu~k~(fiAv + AEa + 2AE.0) (15) 

The normal izat ion f Ck(u) d~u = 1 has been used. F r o m  (15), we obtain 

1 = Io -- iy(fiAv q- AE,, + 2A~.0)I1 (16) 

where 

Fo r  small y, we have 

L = f [M(u) u?/(iyu~ + ~- + 1)] c/"u 

I o = [1/(1 + z)] - -  [y2/(1 + z) a] -k O(y 4) 

~ = - [ i y / ( 1  + ~-)~] + O(y .) 
I2 = [1/(1 -+- z)] - -  [3y2/(1 + T) 31 @ O(y 4) 

We shall assume further  that  z = z o -k ~'~y § ~-2y 2 -k "". F r o m  (16), one obtains  

% = 0, T 1 = 0, ~-~ = --(1 -}- fiAv + AE,a -t- 2AE,o) (17) 

A criterion for  the absence of  eigenvalues with negative real parts  is ~-2 < 0. We have 
obtained again the crterion (9). 

According to L e m m a  1 in the appendix,  the opera tor / s  is self-adjoint, but  the 
(K0~ used above are not  self-adjoint operators.  For  a discussion o f  the adjoint  
equat ion to (10) (i.e., for  a discussion of  residual spectrum of  Rz), it seems to be very 
impor tan t  to conserve the self-adjointness in models  for  Kz.  But such models  (all 
propert ies which models of  R~ should possess are summarized  at  the end of  Section 4) 
are very complicated and the corresponding discussion of  eigenvalues is very difficult. 
I f  we just  try to use 

(z(r>a + = --2i(k~/k) A~)o(k) M1/2(u) u~ ax2 ) m  ~ k  t 

• f M1/~(u') %*(u', t) dan ' = (K~r))~ ~Vk* 
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in the adjoint equation to (15), we obtain, by the same method as in the discussion 
of(15), 

%* = 0, zl* = 0, -r~* = --[1 + flAy + AE,1 -- 2A,~ o(1 + fiAv + AEa] (18) 

If  AE.0 --~ 0 (in this case (K2)~ = (K~i))m is a self-adjoint operator), i.e., if we discuss 
a model for the Boltzmann-Vlasov kinetic equation, r2 and %t are identical, this means 
that the residual spectrum is empty. If  AE,0 ~ 0, further calculations using more 
complicated models are necessary�9 

6. C O N C L U D I N G  REMARKS 

The next steps on the way to complete mathematical discussion of the nonlinear 
Enskog-Vlasov equation (and in this way to a deeper understanding of nonequilibrium 
properties of some phase transitions) could be: (i) discussion of the residual part of 
the spectrum and discussion of properties of eigenfunctions corresponding to eigen- 
values which are close to zero (physically, the selection of the best macroscopic state 
variables), (ii) study of different linearized Enskog-Vlasov equations obtained by 
linearization around different equilibrium stationary solutions to the nonlinear 
Enskog-Vlasov equation, (iii) using different quasilinear approaches, (4~1 and (iv) 
application of the Liapunov theory of stability. 

Everything that is known so far about the mathematical properties of the 
Enskog-Vlasov equation supports the proposed nonequilibrium extension of the 
equilibrium Kirkwood-Monroe theory of phase transitions. 

The next, physically more general, kinetic equation which can be discussed 
without changing greatly the mathematical methods which were used in this paper is 
the Enskog-Vlasov kinetic equation with a Fokker-Planck term, or in other words, 
the Rice-Allnatt kinetic equation with a Vlasov term. A rigorous discussion of more 
general dynamical equations for one-particle, two-particle, or higher distribution 
functions still represents a very difficult mathematical problem. 

A P P E N D I X  

The linearization of Rv is evident and the properties of the Rv.~ are also well 
known. We will sketch here the linearization of RE and prove some useful properties 
o f t h e R z  The part of R (r) containing S~l/~n has the same character as Rv.~ Its �9 E , /  

sum we denote as/s �9 The rest of 6E.'mZ will be denoted as K~ rl, 

K~r)%(u, t) = �89 f d2• d~ul (ul~ -- u~) 

• K~ sin(ak=K~) M(uO[M-~/2(ua) %a + M-Z/2(uz ") q~,a] (A.1) 
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Linearizing R~ ), we get 

f d2• d~Ul M(uO(ul~ -- u~) IC ez 

X [H(g~K=) - -  H(--g~tcc,)][M-1/'z(ul ') hl'(r + e• + M-1/2(u ') h'(r) 

- -  M1/2(t/1)h~(r -- ~• -- M-1/2(u)h(r)] (A.2) 

The second and the fourth terms are the same as the corresponding terms in the 
linearized Boltzmann equation. Applying Fourier transform to the third, the second, 
and the first terms in (A.2), which form the operator K~ il, one gets 

• g~,K~H(g~,~:~) %,i @ no~r%TE,oM1/~(u) f d2• d~Ul M(ul) g,~:~ 

• H(g~:~)[M-1/2(ul ") ~,1 cos((rk~:~) ~- M-1/2(d) q)k'] 

The linear integral operator arising from the last term in (A.1) we denote as I~ r~. 
The linear integral operator arising from the first two terms in (A.2), i.e., the last 
operator on the right side of (A.3), is denoted as I~ i). 

L e m m a  1. All integral operators appearing (as the sum) in the operator 
/s =K~ r) + K~ ~) are self-adjoint operators. 

The proof is evident if we remember that the Jacobian of the transformation 
u, ul,  • --+u', ul', --~ is equal to one. The self-adjointness is also evident from the 
explicit representation of these operators given below. 

In order to obtain an explicit form of the integral operators appearing, we use 
the same manipulation as Grad/43~ We review here only the important steps. (1) In 
the terms that contain ul', the transformation • ~ (v a, e) ~ • ~ ( l~r --ua, E + zr), 
which changes ul' to u l ,  is made (v a is the angle between g and • Equivalently, we 
can write • 2 1 5  X g X  • • I x l X g X  ~11-1, where •  • and ( - - ' ~ ) =  x 1. 
(2) In the II~ ~, an arrangement is made such that the step function can be omitted. 
(3) ~1, ul -+ • g. (4) g = v + w, where v and w are vector parallel and perpendicular 
to • respectively. (5)• g --+ v, w. (6) v = y' -- y. 

The result is 

I(Er)% = f day ' a(r)(y, y') %(y', t> 

where 

1 ( 1 y ,  [2 g12) exp , --  ~ I - - y  - -  

) [ ( y ' - - y ) • 2 1 5  ] l e x p _ [ w ~ _ g 2 [  2 • (d2wsin a k .  I(Y'--Y) x w x ( y ' - y ) J -  .] 
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where 

1 y' 12 ;12) 1 exp ( - -  ~1 --  Y - -  

Y ' - - Y l  

I(Y'--Y) X w X ( y ' - - y ) l  

• e x p - - l w + ~ 2 1 2  

~1 and ~2 are vectors parallel and perpendicular,  respectively, to the vector (y' - -  y), 

-- 1 (Y'2--N2)2 �9 = 1 l ] + y  [ 1 +  y ,  [21I g12-- 4 [ y ' - - y l  2 ' r ~ y ' [ 1  (y,2[y,_y[2y2)~ J (y,21 --YY2)2 

L e m m a  2. The operator  1~ r) and I~ i) are compact.  
For  the proof,  we use the following theorem(44): I f  A is a bounded,  normal  

t ransformat ion on the complete Hilbert  space and if there exist an integer p such that  
A f is compact ,  then A is itself compact.  Using exactly the same method as Grad  (4a) 
{because 

J ( d2w [ e x p ( -  [ w + g~ I~)1 sin( .")  ~< f d2w exp(--  ] w + g2 [2) 

and similarly in a(it(y, y')}, we find that  for p = 3, the corresponding kernels are 
square-integrable. This means that  the operators (I~r)) 3 and (I~i)) ~ are compact  and, 
according the above theorem, the operators I~ r) and I~ il are also compact.  The operator  
K1 and all remaining operators in K are evidently compact ,  so that  the whole opera tor  
K is compact  as well. 
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